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Barcelona, Catalonia, Spain
2 Departamento de Matemática Estatı́stica e Computação, Faculdade de Ciências e Tecnologia-
UNESP, Rua Roberto Simonsen, 305, Cx. Postal 467, CEP 19060-900 P Prudente, São Paulo,
Brazil
3 Departamento de Matemática-IBILCE-UNESP, Rua C Colombo, 2265, CEP 15054-000 S J Rio
Preto, São Paulo, Brazil

E-mail: jllibre@mat.uab.cat, marcelo@fct.unesp.br and prs@ibilce.unesp.br

Received 17 March 2008
Published 16 June 2008
Online at stacks.iop.org/JPhysA/41/275210

Abstract
In this paper by using the Poincaré compactification in R

3 we make a global
analysis of the Rabinovich system
ẋ = hy − v1x + yz, ẏ = hx − v2y − xz, ż = −v3z + xy,

with (x, y, z) ∈ R
3 and (h, v1, v2, v3) ∈ R

4. We give the complete description
of its dynamics on the sphere at infinity. For ten sets of the parameter values
the system has either first integrals or invariants. For these ten sets we provide
the global phase portrait of the Rabinovich system in the Poincaré ball (i.e. in the
compactification of R

3 with the sphere S
2 of the infinity). We prove that for

convenient values of the parameters the system has two families of singularly
degenerate heteroclinic cycles. Then changing slightly the parameters we
numerically found a four wings butterfly shaped strange attractor.

(Some figures in this article are in colour only in the electronic version)

1. Introduction and statement of the main results

The Rabinovich system is the four-parameter family of quadratic differential equations given
by

ẋ = hy − v1x + yz, ẏ = hx − v2y − xz, ż = −v3z + xy, (1)

where the state variables (x, y, z) ∈ R
3 and the parameters (h, v1, v2, v3) ∈ R

4. As usual the
dots denote a derivative with respect to the time t.

System (1) was first studied in [12] throughout the analysis of a concrete realization in a
magnetoactive nonisothermal plasma. From the physical point of view, it is a dynamical system
of three resonantly coupled waves, parametrically excited. Numerically we get parameter
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Figure 1. Rabinovich attractor (left) for the parameter values v1 = 4, v2 = v3 = 1, h = 6.75, and
its projection in the plane xy (right).

values for which a strange attractor similar to the Lorenz one is produced and it corresponds
to stochastic self-oscillations of the wave amplitudes (see figure 1).

In this way, some important properties of system (1) are similar to the properties of the
well-known Lorenz system (see [11])

ẋ = ry − x − yz, ẏ = σ(x − y), ż = −bz + xy. (2)

For instance, one can easily check that: systems (1) and (2) are invariant under the change of
variables (x, y, z) → (−x,−y, z), consequently if (x(t), y(t), z(t)) is a solution of system
(1) or (2), then (−x(t),−y(t), z(t)), its symmetric with respect to the z-axis, is also a solution;
the phase volume under the flow of both systems shrinks uniformly if v1 + v2 + v3 > 0 and
b > r + σ because div(ẋ, ẏ, ż) = −v1 − v2 − v3 for (1), and div(ẋ, ẏ, ż) = r + σ − b for
(2). Thus in these cases the attractors presented by these two systems have zero Lebesgue
measure. Of course systems (1) and (2) are not topologically equivalent, since the number and
local stability of their equilibria are quite different.

The integrability of system (1) has been studied using different theories and methods (see
for instance [8, 13, 14]). In [3] the authors give a qualitative description of the solutions
of system (1) on certain invariant algebraic surfaces. Let U be an open subset of R

3. We
remember that a first integral H : U → R of system (1) is a function which is constant on the
trajectories of the system. We say that two C1 functions H1,H2 : U → R are independent on
U if the 2 × 3 matrix ∂(H1,H2)

∂(x,y,z)
has rank 2 at all points (x, y, z) ∈ U , except perhaps on a subset

of zero Lebesgue measure. System (1) is integrable for a choice of the parameters h, v1, v2, v3

if it has two independent first integrals. If a system is integrable, then we can obtain its global
phase portrait simply by performing the intersections of the level sets of its first integrals.
A function I (x, y, z, t) is an invariant of system (1) if dI/dt = 0 on the trajectories of the
system, i.e. an invariant is a first integral which depends on the time. The following proposition
summarizes the results on the integrability and on the existence of invariants for system (1).
The proofs of these results can be found in [8, 13, 14].

Proposition 1. System (1) has the invariants I and the first integrals H given in table 1.

Proposition 1 will be used in the following sections for studying the global dynamics
behavior of system (1) having a first integral or an invariant. We will use the Poincaré
compactification for a polynomial vector field in R

3 which is described in section 3 of [1], for
R

3 and in [7] for R
n. We say that two polynomial vector fields X and Y on R

3 are topologically
equivalent if there exists a homeomorphism on the closed Poincaré ball preserving the infinity

2
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Figure 2. Phase portrait of system (1) at infinity.

Table 1. First integrals, invariants and figure with the global phase portraits of system (1). See the
remarks at the end of the paper.

v1, v2, v3, h I or H Figure

(a) v1 = v2 = v3 = 0
H1 = x2 + y2 − 4hz

H2 = y2 + z2 − 2hz
9, 10

(b) v1 = v2 = v3 �= 0, h = 0 H = x2−z2

x2+y2 11

(c) v1 = v2 = 0, v3 �= 0, h = 0 H = x2 + y2 12
(d) v2 = v3 = 0, v1 �= 0 H = y2 + z2 − 2hz 13
(e) v1 = v3 = 0, v2 �= 0 H = x2 − z2 − 2hz 14, 15, 16
(f) v1 = v2 = v3 = v > 0, h �= 0 I = (x2 − y2 − 2z2) e2vt 17
(g) v1 = v2 = v �= 0, v2 �= v3, h = 0 I = (x2 + y2) e2vt 18
(h) v1 = v2 = v �= 0, v3 = 2v, h �= 0 I = (x2 + y2 − 4hz) e2vt 19
(i) v2 = v3 = v �= 0, v1 �= v2, h = 0 I = (y2 + z2) e2vt 20
(j) v1 = v3 = v �= 0, v1 �= v2, h = 0 I = (x2 − z2) e2vt 21

(i.e. the boundary of the ball) carrying orbits of the flow induced on the Poincaré ball by X
into orbits of the flow induced in the Poincaré ball for Y.

The first result of this paper is the following.

Theorem 2. For all values of the parameters h, v1, v2, v3 the phase portrait of system (1)
on the sphere at infinity is topologically equivalent to that shown in figure 2: there exist four
centers at the positive and negative endpoints of the x- and z-axis and two hyperbolic saddles
at the positive and negative endpoints of the y-axis.

It is important to note that the dynamics at infinity does not depend on the parameter
values. In this paper we study the dynamics of the Rabinovich system (1) for the systems
of table 1 on the whole space R

3 including the behavior on the sphere at infinity, i.e. on the
Poincaré ball.

Theorem 3. The global phase portrait of system (1) in the Poincaré ball for the cases
(a), . . . ,(h) of proposition 1 are topologically equivalent to those described in the figures of
table 1.

3
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Figure 3. Singularly degenerate heteroclinic cycles: of the Lorenz system type (left) and of the
Rabinovich system type (right).

In [10] the authors suggest that the existence of a singularly degenerate heteroclinic cycle
can give the basic structure for the generation of chaotic dynamics of the Lorenz-like systems,
where we can include the Rabinovich system. In that paper they get such cycles for a system
equivalent to the Lorenz one, in the case of b = 0, r → ∞ and bounded σ . This singular
cycle consists of an invariant set formed by a line of equilibria together with a heteroclinic
orbit connecting two of the equilibria (see figure 3, left). Moreover if moving the parameters
near these degenerate heteroclinic cycles we have a return Poincaré map, then according with
[10] a strange attractor can be created. In this paper we show that Rabinovich system also
presents singularly degenerate heteroclinic cycles, which are topologically equivalent to those
presented by the Lorenz system (see figure 3, right). More precisely we prove the following
result.

Theorem 4. For the parameter values h = v2 = 0 and for any v1 = v3 �= 0, system (1) has
two families of singularly degenerate heteroclinic cycles. One of the families is contained in
the plane {x = z} and the other in the plane {x = −z}. Moreover each family contains an
infinite set of these degenerate cycles such that when they tend to infinity they accumulate at a
heteroclinic cycle on the sphere of infinity.

As suggested in [10] we expect that some type of strange attractor should occur in a
neighborhood of the families of singularly degenerate heteroclinic cycles. In fact throughout
a numerical study of the solutions of the Rabinovich system we found a four wings butterfly
shaped strange attractor for the parameter values v1 = 1.5, v2 = −0.3, v3 = 1.67 and
h = 0.04 (see figures 4 and 5). This attractor is different and occurs for other parameter values
than that described in the literature and shown in figure 1. Four wings type attractors were
recently described in [3, 4] in the study of three and four-dimensional differential systems
and electronic circuits were designed which realize the phase portraits of these mathematical
systems. Nice pictures of the four wings attractors have been observed as the output signal of
these circuits on the oscilloscope.

The paper is organized as follows. In section 2 we summarize the results related to
the dynamics and bifurcation of the finite singularities. In section 3 we prove theorem 2 by
using the Poincaré compactification for a polynomial vector field in R

3. In section 4 we prove

4
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Figure 4. Four wings strange attractor for Rabinovich system (left) with parameter values
v1 = 1.5, v2 = −0.3, v3 = 1.67, h = 0.04 and its projection on the plane xy (right).
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Figure 5. Projections of figure 4, left, on the planes xz (on the left) and yz (on the right).

theorem 3. Finally, in section 5 we prove theorem 4 and numerically we compute some strange
attractors in a neighborhood of the families of singularly degenerate heteroclinic cycles.

2. The dynamics of finite singularities

In this section we present a result on the α- and the ω-limit sets of a bounded trajectory, and
summarize the results related to the dynamics and bifurcation of the finite singularities of
Rabinovich system.

Lemma 5. If ϕ(t) = (x(t), y(t), z(t)), t ∈ R, is a bounded trajectory of Rabinovich system
(1) satisfying one of the conditions (g),. . .,(j) of table 1 with invariant given by I = f · e2vt ,
then its α-limit set α(ϕ) and its ω-limit set ω(ϕ) are contained in the set S = {f = 0}.
Proof. Suppose that v > 0. Let q1 ∈ ω(ϕ). Thus there exists tn → ∞ such that ϕ(tn) → q1.

Thus f (ϕ(tn)) = c
evtn

→ 0 and f (ϕ(tn)) → f (q1). It follows that f (q1) = 0 and then q1 ∈ S.

Suppose now that q2 ∈ α(ϕ). Thus there exists tn → −∞ such that ϕ(tn) → q2. It follows
that f (ϕ(tn)) · evtn → f (q2) · 0 = c. Thus c = 0 and then f (ϕ(tn)) · evtn = 0. It implies that
f (ϕ(tn)) = 0 and thus f (q2) = 0. Then q2 ∈ S. �

5
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Proposition 6. Let Xh,v : R
3 → R

3 be the vector field corresponding to system (1), with
v1 = v2 = v3 = v, that is the vector field given by Xh,v(x, y, z) = (hy − vx + yz, hx − vy −
xz,−vz + xy).

(a) The singularities of X0,0 are given by the three coordinate axes. If h �= 0 then Xh,0 is
linearly equivalent to X1,0. The singularities of X1,0 are given by the following straight
lines: (0, 0, z) with z ∈ R; (x, 0, 1) with x ∈ R; and (0, y,−1) with y ∈ R. The solutions
of X1,0 and X0,0 belong to the intersection of the level sets H1 = k1 and H2 = k2 of the
first integrals given in table 1(a).

(b) If v �= 0 then Xh,v is linearly equivalent to Xh/v,1. If H = h
v

�= 0 and |H | � 1 then the
only singular point of XH,1 is the origin S0 = (0, 0, 0). If |H | < 1 it is an attracting node
or focus. For |H | = 1 a pitchfork bifurcation occurs, that is S0 becomes non-hyperbolic
since one of its eigenvalues has zero real part, and for |H | > 1 it becomes a saddle and
two new symmetric singular points S± appear, where

S± =
(

± HR

H 2 − √−H 2 + H 4
,±R,

HR2

H 2 − √−H 2 + H 4

)
,

with R =
√

−H 2 + 1 +
√−H 2 + H 4. The singular points S± are attracting nodes or foci.

If ϕ(t) = (x(t), y(t), z(t)), t ∈ R, is a bounded trajectory of XH,1 then its α-limit set
α(ϕ) and its ω-limit set ω(ϕ) are contained in the cone C = {x2 − y2 − 2z2 = 0}. In
particular S0, S+, S− ∈ C. Moreover, for H = 0 we have that S0 is the unique singular
point of X0,1.

Proof. The proof of statement (a) is easy. Now we prove statement (b). Suppose that
h �= 0 and that v = 0. Thus the linear change of coordinates x → hX, y → hY, z → hZ

and the time rescaling t = hτ give the linear equivalence. Similar argument can be used if
v = 0. The singularities of XH,1 are given by

(
HR

1−R2 , R, HR2

1−R2

)
, with R satisfying the equation

R4−2(1−H 2)R2 +1−H 2 = 0. Solving this equation we get R =
√

−H 2 + 1 +
√−H 2 + H 4.

Thus there exists R �= 0 only if |H | > 1 and in this case −H 2 + 1 − √−H 2 + H 4 < 0. To
classify the singular points we compute the eigenvalues of the linear part JXH,1(S0) and find
λ1 = −H − 1, λ2 = −1, and λ3 = H − 1. The eigenvalues of the linear parts JXH,1(S+) and

JXH,1(S−) are −2,− 1
2 +

√
9−8H 2

2 ,− 1
2 −

√
9−8H 2

2 . According to table 1(g) there exists c ∈ R

such that

I (ϕ(t), t) = (x2(t) − y2(t) − 2z2(t)) · e2t = g(ϕ(t)) · e2t = c.

The assertions about the ω-limit and about the α-limit follow from lemma 5. �

Following the computations of [3] one can see that the Rabinovich system XH,1, with
H �= 0, restricted to the surface C with x � 0 is

ṙ = r(−1 + H cos θ + r sin θ cos θ), θ̇ = r(1 + cos2 θ) − H sin θ, (3)

where x = √
2r, y = √

2r cos(θ), and z = r sin(θ). System (3) has no finite periodic orbits
and its infinity is an unstable limit cycle. Moreover the flow on the negative half-cone (x � 0)

is obtained by using the symmetry (x, y, z) → (−x,−y, z).

Proposition 7. Let Xh,v1,v2,v3 : R
3 → R

3 be the vector field corresponding to system (1). If
v �= 0 then Xh,v,v,2v is linearly equivalent to Xh/v,1,1,2. Consider H = h

v
.

(a) If H �= 0 and |H | � 1, then the only singular point of XH,1,1,2 is L0 = (0, 0, 0). Moreover
if |H | < 1 it is an attracting node or focus, and if |H | = 1 it is not a hyperbolic singular
point.

6
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(b) If H �= 0 and |H | > 1, then the singular points of XH,1,1,2 are L0, L+ and L− where

L± = ( ± T (2H 2+2
√

H 4−H 2)

2H
,±T ,

√
H 4−H 2

H

)
, and T =

√
−2H 2 + 2 + 2

√
H 4 − H 2. The

singular point L0 is a saddle with stability index 2 (i.e, two eigenvalues with negative real
part and one eigenvalue with positive real part) and the singular points L+ and L− are
attracting nodes or foci. If ϕ(t) = (x(t), y(t), z(t)), t ∈ R is a bounded trajectory then
its α-limit set and its ω-limit set are contained in the surface P = {x2 + y2 − 4Hz = 0}.
In particular L0, L+, L− ∈ P.

(c) L0 is the only singular point of X0,1,1,2.

Proof. The eigenvalues of the linear part JXH,1,1,2(L0) are λ1 = −2, λ2 = H − 1, λ3 =
−H − 1. If |H | > 1 then the eigenvalues of the linear parts JXH,1,1,2(L+) and JXH,1,1,2(L−)

are −2,−1 +
√

5 − 4H 2,−1 − √
5 − 4H 2. �

Following the computations of [3], the Rabinovich system XH,1,1,2 restricted to the surface
P is

ẋ = −x + Hy +
1

4H
y(x2 + y2), ẏ = Hx − y − 1

4H
x(x2 + y2). (4)

Since the divergence of (4) is −2, one can see that it has no limit cycles nor loops
containing finitely many finite singularities.

Proposition 8. Let Xh,v1,v2,1 : R
3 → R

3 be the vector field corresponding to system (1) for
the case v3 = 1. If h <

√
v1v2 then C0 = (0, 0, 0) is the only singular point. If h � √

v1v2

then it has three singular points: C0, C+ and C− where C± = ( ± hK
v1−R2 ,±K, hK2

v1−K2

)
, and

K =
√

−h2+v1v2+
√

h4−h2v1v2

v2
. The point C0 is a saddle with stability index 2.

The proof of proposition 8 is easy and it is omitted.
A numerical investigation of system (1) is done at [12]. For v1 = 4, v2 = 1, v3 = 1 and

h = 6.75 the singular points are C0 = (0, 0, 0), C± = (±4.611 . . . ,±1.397 . . . , 6.446 . . .).

The eigenvalues of the linear part at C0 are −9.414 . . . ,−1, 4.414 . . ., and at C± are
−6.316 . . . ± i(5.127 . . .). The trajectory of a point makes several revolutions around the
singular point C+ then goes over to C− and rotates around it, returns back to C+, etc. One can
see that for v1 = 4 and v2 = v3 = 1 there are values of h such that limit cycles and strange
attractors appear (see figure 1). This analysis can be obtained with all details in [12].

3. The behavior on the sphere at infinity

In this section we do an analysis of the flow of system (1) at infinity. Fixing the notation in
accordance with the results stated in [1] we write the polynomial differential system (1) as
ẋ = P 1, ẏ = P 2 and ż = P 3 with

P 1 = hy − v1x + yz, P 2 = hx − v2y − xz, P 3 = −v3z + xy.

In the next four subsections we study the Poincaré compactification of system (1) in the local
charts Ui and Vi, i = 1, 2, 3.

3.1. In the local charts U1 and V1

The Poincaré compactification p(X) of system (1) in the local chart U1 is given by

ż1 = −z2 + hz3 − hz2
1z3 − z2z

2
1 + v1z1z3 − v2z1z3,

ż2 = z1 − hz1z2z3 − z2
2z1 + v1z2z3 − v3z2z3, (5)

ż3 = z3(−hz1z3 + v1z3 − z1z2).

7
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-1
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z1
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Figure 6. Phase portrait of system (6).

For z3 = 0 (which corresponds to the points of the sphere S at infinity) the unique singular
point of (5) is (0, 0, 0) and the eigenvalues of the linear part of the system at this point are
i,−i and 0, the zero eigenvalue has eigenvector (0, h, 1).

In general the dynamics near a non-hyperbolic singular point of this type can be rather
complex, see for instance [9]. Fortunately as a property of the compactification procedure, the
plane z1z2 is invariant under the flow of system (5), which makes the analysis on the infinite
sphere simpler. Taking z3 = 0 the equations of system (5) reduce to

ż1 = −z2 − z2
1z2, ż2 = z1 − z1z

2
2, (6)

which have (0, 0) as their unique singular point and the eigenvalues of the linear part of the
system at this point are given by ±i. Hence the point is a focus or a center. Since system (6)
has the first integral H = ln

(
1 + z2

1

)2 − ln
(
1 − z2

2

)2
, the origin is a center. Using this first

integral and observing that system (6) has z2 = ±1 as invariant lines, it follows that the phase
portrait on the local chart U1 on the infinite sphere is as shown in figure 6. The flow on the
local chart V1 is the same than the flow on the local chart U1 reversing the time, because the
compactified vector field p(X) in V1 coincides with the vector field p(X) in U1 multiplied by
−1 (see [1]).

3.2. In the local charts U2 and V2

The expression of the Poincaré compactification p(X) of system (1) in the local chart U2 is
given by

ż1 = z2 + hz3 + z2
1z2 − hz2

1z3 + v2z1z3 − v1z1z3,

ż2 = z1 + z1z
2
2 − hz1z2z3 + v2z2z3 − v3z2z3, (7)

ż3 = v2z
2
3 − hz1z

2
3 + z1z2z3.

If z3 = 0 the unique singular point of system (7) is p1 = (0, 0, 0). We want to study the local
flow of this system at p1. The eigenvalues of the linear part of (7) at p1 are −1, 1 and 0,

with eigenvectors (1, 1, 0), (−1, 1, 0) and (0,−h, 1), respectively. Hence system (7) has a
two-dimensional saddle at p1 when we restrict the flow to the infinity (i.e. to z3 = 0, which

8
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is invariant) and a one-dimensional center manifold to p1 contained in the interior of the ball
diffeomorphic to R

3. We are interested in the flow of system (7) for z3 > 0, which enables
us to study the flow of system (1) in the positive z-axis near the point (0, 0, 0) at infinity. To
understand the dynamics of the system we shall study the flow on this center manifold. The
following result holds.

Proposition 9. The singular point p1 = (0, 0, 0) of system (7) is asymptotically stable (resp.
unstable) along a one-dimensional center manifold to p1 if v2 < 0 (resp. v2 > 0).

Proof. Under the above considerations, from the center manifold theorem (see [2] or
[6]) it follows that system (7) has one-dimensional center manifold at the singular point
p1 = (0, 0, 0), which is the graph of a function h : R → R

2 given by (z1, z2) = F(z3) =
(F1(z3), F2(z3)) satisfying the conditions F(0) = (0, 0),DF(0) = (0,−h), and

ż1 − DF1(z3)ż3 = 0, ż2 − DF2(z3)ż3 = 0. (8)

Moreover the flow on this center manifold is governed by the one-dimensional equation

ż3 = v2z
2
3 + F1(z3)F2(z3)z3 − hF1(z3)z

2
3. (9)

To understand the above flow on this manifold we expand F in Taylor series around z3 = 0.

Using the conditions, we can take

F1(z3) =
∞∑
i=2

aiz
i
3 and F2(z3) = −hz3 +

∞∑
i=2

biz
i
3. (10)

Now from (8) and considering the expressions for ż1 and ż2 given by system (7) we have

F2 + hz3 + F 2
1 F2 − hF 2

1 z3 + v2F1z3 − v1F1z3 − DF1
(
v2z

2
3 + F1F2z3 − hF1z

2
3

) = 0, (11)

F1 + F1F
2
2 − hF1F2z3 + v2F2z3 − v3F2z3 − DF2

(
v2z

2
3 + F1F2z3 − hF1z

2
3

) = 0, (12)

where F1 = F1(z3), F2 = F2(z3) are provided by (10) and DFi = DFi(z3) = F ′
i (z3), i =

1, 2. Equating the coefficients of the powers of z3 in (11) and in (12) one obtains

a2 = h(v2 − v3), a3 = 0, a4 = h(v2 − v3)[−2h + v3(v1 − v2) − v2(v1 − v2)] + v2h

and

b2 = 0, b3 = h(v2 − v3)(v1 − v2), b4 = 0.

Hence an approximation of the local center manifold at p1 is the graph of the function
(z1, z2) = F(z3) = (F1(z3), F2(z3)), where

F1(z3) = h(v2 − v3)z
2
3 + {h(v2 − v3)[−2h + v3(v1 − v2) − v2(v1 − v2)] + v2h}z4

3

and F2(z3) = h(v2 − v3)(v1 − v2)z
3
3. Now it follows from (9) that the flow on this center

manifold is determined by the equation ż3 = v2z
2
3 + O

(
z4

3

)
which implies that, for z3 > 0, p1

is locally asymptotically stable along its center manifold if v2 < 0, and it is unstable if v2 > 0.

�

From proposition 9 one can conclude that there is a trajectory of system (1) which escapes
to infinity as t → ±∞ (depending on the sign of v2). In fact, since the infinity of this system
in the local chart U2 is invariant, the unique way in order that a solution reaches the infinity is
tending to the singular point p1 (which is a saddle on the sphere at infinity) and this is possible
only over the center manifold. The flow on the local chart V2 is the same as the flow on the
local chart U2 reversing the time, because the compactified vector field p(X) in V2 coincides
with the vector field p(X) in U2 multiplied by −1.

9
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1-1 z1

z2

Figure 7. Phase portrait of system (14).

Remark 10. If h = 0 then the above center manifold coincides with the z3-axis. Indeed, in
this case if we consider z1 = z2 = 0 system (7) reduces to ż1 = 0, ż2 = 0, ż3 = v2z

2
3. Hence

considering z3 > 0 the origin in the local chart U2 is stable (resp. unstable) if v2 < 0 (resp.
v2 > 0). In the local chart V2 we have to change the sign of system (7), so in this chart the
dynamics on the z3-axis is governed by the equation ż3 = −v2z

2
3. Considering z3 < 0 (see

[1]) we have that the origin is stable (resp. unstable) if v2 < 0 (resp. v2 > 0).

3.3. In the local charts U3 and V3

The expression of the Poincaré compactification p(X) in the local chart U3 is

ż1 = z2 − z2
1z2 + hz2z3 + v3z1z3 − v1z1z3,

ż2 = −z1 + hz1z3 − z1z
2
2 + v3z2z3 − v2z2z3, (13)

ż3 = v3z
2
3 − z1z2z3.

Again the eigenvalues of the linear part of (13) at (0, 0, 0) which is the unique singular
point on z3 = 0, are i,−i and 0, and the zero eigenvalue has eigenvector (0, 0, 1). Taking
z3 = 0 the equations of system (13) reduce to

ż1 = z2 − z2
1z2, ż2 = −z1 − z1z

2
2, (14)

which has (0, 0) as its unique singular point. System (14) has the first integral H =(
z2

1 − 1
)/(

z2
2 + 1

)
. Hence the origin of the chart U1 restricted to the infinite sphere is a

center. Using this first integral and observing that system (6) has z1 = ±1 as invariant lines,
it follows that the phase portrait on the local chart U1 over the infinite sphere is as shown in
figure 7.

Again we observe that the flow on the local chart V3 is the same as the flow on the local
chart U3 reversing the time, because the compactified vector field p(X) in V3 coincides with
the vector field p(X) in U3 multiplied by −1.

Proof of theorem 2. Considering the analysis made in the previous subsections we have a
global picture of the system (1) on the sphere at infinity: the system has four centers, localized

10
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(a) y
x

z

(b)

Figure 8. Phase portrait of the Rabinovich system with v1 = v2 = v3 = h = 0 on S
2 in (a), and

on a cylinder x2 + y2 = c1 in (b).

at the endpoints of the x- and z-axis, and two saddles, localized at the endpoints of the y-axis
(see figure 2). Moreover, the orbits of the system may come from and go to infinity along a
one-dimensional center manifold of these saddle points, depending on the sign of the parameter
v2. The dynamics near the center at infinity is more complex, due to the periodic orbits. �

4. Global phase portraits of the Rabinovich system

In this section we prove theorem 3. We consider the invariants and the first integrals given in
table 1 and how these surfaces end in the Poincaré sphere at infinity.

4.1. Case v1 = v2 = v3 = 0 (table 1(a))

For these parameter values the Rabinovich system is completely integrable.
If h = 0 the axes x, y and z are formed by singular points. According to proposition 1 the

trajectories are contained in the intersection of the cylinders x2 + y2 = c1 and y2 + z2 = c2,
where c1, c2 � 0. For c1 �= c2 the intersection is formed by two periodic orbits and if c1 = c2

the intersection is formed by four heteroclinic cycles which share a common segment of
singular points on the y-axis. Near the infinity the periodic orbits approach the orbits of the
centers at infinity and the heteroclinic cycles approach the saddle separatrices at infinity. See
figure 8.

If h �= 0 then according to proposition 6(a) it is enough to consider h = 1. For these
parameter values the Rabinovich system is completely integrable. The singularities are given
by the z-axis and the straight lines (x, 0, 1) and (0, y,−1). The endpoints of (x, 0, 1) on the
Poincaré sphere are (±1, 0, 0), and of (0, y,−1) are (0,±1, 0). According to proposition 1
the trajectories are in the intersection of the paraboloids x2 + y2 − 4z = c1 with the cylinders
y2 + (z − 1)2 = c2 where c1, c2 ∈ R. The intersection produces families of periodic orbits,
and for c1 = c2 the intersection occurs on the planes x = ±(z + 1). See figure 9.

11
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(c) (d )(b)

(a) y
x

z

Figure 9. Phase portrait of the Rabinovich system with v1 = v2 = v3 = 0, h �= 0 on S
2 in (a),

and on the paraboloids x2 + y2 − 4z = c1 with c1 ∈ (−∞, −4] in (b), with c1 ∈ (−4, 4] in (c),
and with c1 ∈ (4, ∞) in (d).

4.2. Case v1 = v2 = v3 = v �= 0, h = 0 (table 1(b))

According to proposition 6(b) it is enough to consider v = 1. In this case the trajectories are
in the cone (1 − k)x2 − ky2 − z2 = 0 with k ∈ R\{0} and in the planes x = ±z when k = 0.

The (0, 0, 0) is the only singular point which is an attracting node. Moreover the divergence
is constant and equal to −3, and consequently the system has no finite periodic orbits. The
three axes are invariant. See figure 10.

4.3. Case v1 = v2 = 0, v3 �= 0, h = 0 (table 1(c))

In this case H = x2 + y2 is a first integral. The z-axis is formed by singular points and
a complete analysis of the dynamics of the Rabinovich system restricted to the cylinder
x2 + y2 = r2 with r > 0 can be found in [3]. For v3 < 0, in each cylinder there are two
stable nodes or foci and two saddles. Moreover the system has no limit cycles and loops
containing finitely many singularities in the invariant cylinders. Observe that the endpoints of
the cylinders are the points (0, 0,±1) of the Poincaré sphere. For v3 > 0 the phase portrait
on the cylinder is the same reversing the time. See figure 11.
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(a) y
x

z

(b) (c)

Figure 10. Phase portrait of the Rabinovich system with v1 = v2 = v3 �= 0, h = 0 on S
2 in (a),

and on the cone (1 − k)x2 − ky2 − z2 = 0 (k �= 0) in (b), and on the planes x = z (k = 0) with
z > 0 in (c).

(a)
y

x

z

(b)

Figure 11. Phase portrait of the Rabinovich system with v1 = v2 = 0, v3 �= 0, h = 0 on S
2 in (a),

and on a cylinder x2 + y2 = r2 in (b).

4.4. Case v2 = v3 = 0, v1 �= 0 (table 1(d))

In this case H = y2 + z2 − 2hz is a first integral. A complete analysis of the dynamics of
the Rabinovich system restricted to the level y2 + (z − h)2 = r2 with r > 0 can be found in
[3]. The straight line (x, 0, h) is formed by singular points. Observe that the endpoints of the

13
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(a) (b) (c) y

x

z

Figure 12. Global phase portrait of Rabinovich system with v2 = v3 = 0, v1 �= 0 on the cylinders
y2 + (z − h)2 = r2 with r < 2h in (a), with r = 2h in (b) and with r > 2h in (c).

cylinders are the points (±1, 0, 0) of the Poincaré sphere. If v1 > 0 and h � 0 the system has
two singularities when r < 2h (an unstable node or focus and a saddle) and four singularities
when r > 2h (two nodes or foci and two saddles). For r = 2h three singularities coincide.
Moreover the system has no periodic orbits and loops containing finitely many singularities
on the invariant cylinders. A complete phase portrait is the union of the figures 12(a)–(c), with
the sphere. For v1 < 0 the phase portrait on the cylinders is the same reversing the time.

4.5. Case v1 = v3 = 0, v2 �= 0 (table 1(e))

In this case H = x2 − (z + h)2 is a first integral. Assume that v2 > 0. A complete analysis of
the dynamics of the Rabinovich system restricted to the hyperbolic cylinders x2 − (z + h)2 =
±r2, if r �= 0, and on the planes x2 − (z + h)2 = 0 can be found in [3]. For r = 0 the
level is formed by two planes with endpoints being the saddle separatrices on the infinity
sphere. The dynamics on the planes is the following. The system has two singular points,
an attracting node or focus, and the (0, 0, 0) which is a non-hyperbolic singular point. The
straight line (0, y,−h) (intersection of the planes x = z + h and x = −(z + h)) is invariant
with its points having (0, 0, 0) like ω-limit. See figure 13. For r �= 0 the level is a pair of
hyperbolic cylinders. On each hyperbolic cylinder x2 − (z + h)2 = −r2, r �= 0 there exists
three singular points (a saddle and two attracting nodes or foci) if r < 2h, and an attracting
node or focus if r � 2h. On each hyperbolic cylinder x2 − (z + h)2 = r2, r �= 0 there exists
only one singular point which is an attracting node or focus. For v2 < 0 the phase portrait on
the cylinder is the same reversing the time. A complete phase portrait can be obtained with
the union of the figures 13–15 and the infinity sphere.

4.6. Case v1 = v2 = v3 = v > 0, h �= 0 (table 1(f))

According to proposition 6(b) it is enough to consider v = 1. In this case the cone
x2 = y2 + 2z2 is an invariant algebraic surface. The z-axis is invariant. Since the divergence
is constant −3 it follows that the system has no finite periodic orbits. If 0 �= |h| � 1 then
(0, 0, 0) is the only singular point and it is an attracting node or focus if |h| < 1. If |h| > 1
then the system has three singular points, a saddle (0, 0, 0), and two attracting nodes or foci
S±. The singularity S+ is on the part of the cone with x > 0 and S− is on the part of the cone
with x < 0. Two separatrices (one stable and one unstable) of the saddle are in the part of
the cone with x > 0 and the other two are in the part with x < 0. See figure 16. According
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(a)
y

x

z

(b)

Figure 13. Phase portrait of the Rabinovich system for v1 = v3 = 0, v2 �= 0, h � 0 on S
2 in (a),

and on the planes x2 − (z + h)2 = 0 in (b).

(a) (b)y
x

z

Figure 14. Phase portrait of the Rabinovich system for v1 = v3 = 0, v2 �= 0, h � 0 on the
hyperbolic cylinder x2 − (z − h)2 = −r2 with r < 2h in (a), and with r � 2h in (b).

y

x

z

Figure 15. Phase portrait of the Rabinovich system for v1 = v3 = 0, v2 �= 0, h � 0 on the
hyperbolic cylinder x2 − (z − h)2 = r2.

to lemma 5 for any regular trajectory γ not starting on the cone we have that α(γ ) ⊂ C and
ω(γ ) ⊂ S

2 ∪ C.

4.7. Case v1 = v2 = v �= 0, v2 �= v3, h = 0 (table 1(g))

For these parameters the only information that we have is that I = (x2 +y2) e2vt is an invariant.
The Rabinovich system restricted to (0, 0, z) (i.e. f = x2 + y2 = 0) is the trivial linear system
ż = −v3z. If v < 0 and v3 > 0, then the ω–limit of any orbit γ is ω(γ ) = {(0, 0, 0)}, and the
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(*)

y
x

z

* *

(a) (b)

Figure 16. Phase portrait of the Rabinovich system for v1 = v2 = v3 = 1, h � 0 on the cone
x2 = y2 + 2z2 with 0 �= |h| � 1 in (a), and with |h| > 1 in (b).

y
x

z

(a)
(b) (c)

Figure 17. Phase portrait of the Rabinovich system for v1 = v2 = v �= 0, v2 �= v3, h = 0 on the
sphere with v3 > 0 in (a), with v3 = 0 in (b), and with v3 < 0 in (c).

α–limit is contained on S
2. If v < 0 and v3 < 0, then the ω-limit of any orbit γ is ω(γ ) ⊂ S

2

and the α-limit is contained on S
2, too. If v < 0 and v3 = 0, then the ω-limit of any orbit γ is

ω(γ ) ⊂ z-axis. See figure 17.

4.8. Case v1 = v2 = v �= 0, v3 = 2v, h �= 0 (table 1(h))

According to proposition 7 it is enough to consider v = 1 and h > 0. In this case the
paraboloid x2 + y2 − 4hz = 0 is an invariant algebraic surface. A complete analysis of the
dynamics of the Rabinovich system restricted to P can be found in [3]. It has no finite periodic
orbits. If 0 < h � 1 then (0, 0, 0) is the only singular point and it is an attracting node or
focus (a weak focus if h = 1). If h > 1 then it has three singular points a saddle (0, 0, 0),

and two attracting node or foci L±. The endpoints of the paraboloid is (0, 0, 1). According
to lemma 5 for any trajectory γ not contained in the paraboloid we have that α(γ ) ⊂ P and
ω(γ ) ⊂ S

2. See figure 18.

4.9. Case v2 = v3 = v �= 0, v1 �= v2, h = 0 (table 1(i))

For these parameters the only information that we have is that I = (y2 +z2) e2vt is an invariant.
The Rabinovich system restricted to (x, 0, 0) is the trivial linear system ẋ = −v1x. If v < 0
and v1 > 0, then the ω-limit of any orbit γ is ω(γ ) = {(0, 0, 0)}, and the α-limit is contained
on S

2. If v < 0 and v1 < 0, then the ω-limit of any orbit γ is ω(γ ) ⊂ S
2 and the α-limit is
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y
x

z

(a)

(b)

(c)

Figure 18. Phase portrait of the Rabinovich system for v1 = v2 = 1, v3 = 2, h > 0 on the sphere
in (a), and on the paraboloid x2 + y2 − 4hz = 0 with 0 < h � 1 in (b) and with h > 1 in (c).

y
x

z

(a)
(b) (c)

Figure 19. Phase portrait of the Rabinovich system for v2 = v3 = v �= 0, v1 �= v2, h = 0 on the
sphere with v1 > 0 in (a), with v1 = 0 in (b), and with v1 < 0 in (c).

contained on S
2 too. If v < 0 and v1 = 0, then the ω-limit of any orbit γ is ω(γ ) ⊂ x-axis.

See figure 19.

4.10. Case v1 = v3 = v �= 0, v2 �= v, h = 0 (table 1(j))

The planes x = ±z are invariant by the flow of system (1). A complete analysis of the system
restricted to the levels x = ±z can be found in [3]. Taking x = z the Rabinovich system
reduces to

ẋ = −v1x + xy, ẏ = −v2y − x2. (15)

If v2 = 0, then system (15) has a line of equilibria on the y-axis. The linear part
of the system calculated at the equilibria (0, y) has the trivial eigenvalues 0 and y − v1,
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y
x

z

(a) (b)

(c) (d )

Figure 20. Phase portrait of the Rabinovich system for v1 = v3 = v �= 0, v2 �= v, h = 0 on the
sphere at infinity in (a), with v2 > 0 in (b), with v2 < 0 in (c), and with v2 = 0 in (d).

with corresponding eigenvectors (0, 1) and (1, 0), respectively. Now by a simple integration
we have that the orbits of system (15) are contained in the ellipses given by the equation
x2

2 + y2

2 − v1y = c, with c > 0 constant. The endpoints of the invariant planes x = ±z

coincide exactly with the heteroclinic cycles of the saddles at infinity. The analysis in the
plane x = −z is completely analogous.

If v2 �= 0, the unique equilibrium point of system (15) is the origin (0, 0). If v1 = v3 > 0
and v2 > 0 the origin is the unique equilibrium point and it is globally asymptotically stable.
If v2 < 0 the origin is a saddle point. On the direction of the y-axis, which is invariant under
the flow of the system, the origin is asymptotically stable if v2 > 0 and unstable if v2 < 0.

According to lemma 5 the ω-limit set of any point not in the planes x = ±z are contained
in these planes and the α-limit set is at infinity.

If v1 = v3 > 0 and v2 < 0 the system has four more equilibria beyond the origin, two of
them contained in the plane x = z and the other two in the plane x = −z. These equilibria
are unstable foci (see figures 20 and 21).

5. Proof of theorem 4 and guided numerical simulations

We start this section with the proof of theorem 4.

Proof of theorem 4. For the parameter values h = v2 = 0 and for any v1 = v3 �= 0,
system (1) has a line of equilibria, given by the y-axis, see figure 20(d). For y < v1

the equilibria P = (0, y, 0) are stable in a normal direction to the y-axis, that is the

18



J. Phys. A: Math. Theor. 41 (2008) 275210 J Llibre et al

–2

–1

0

1

2

x(t)

–3
–2

–1
0

1
2

3

y(t)

–2

0

2

z(t)

–3–2–10123

y(t)

–2

–1

0

1

2

z(t)

Figure 21. Phase portrait of the Rabinovich system with h = 0, v1 = v3 > 0 and v2 < 0 and its
projection in the plane yz.

linearized system at P has one negative and two zero eigenvalues and the corresponding
one-dimensional stable manifolds are contained in the planes x = ±z and consequently are
normal to the y-axis. For y > v1 the equilibria Q = (0, y, 0) are unstable in a normal
direction to the y-axis, that is the linear part of system (1) at Q has one positive and two zero
eigenvalues and the corresponding one-dimensional unstable manifolds are contained in the
planes x = ±z, and hence are normal to the y-axis. The one-dimensional unstable manifolds
Wu(Q) of each normally hyperbolic equilibrium Q tend to one of the normally hyperbolic
stable equilibrium P as t → +∞, forming singularly degenerate heteroclinic cycles (see
figure 20(d)). There is one family of degenerate heteroclinic cycles contained in the plane
x = z and another contained in the plane x = −z. Furthermore, when we tend to infinity these
cycles accumulate in the heteroclinic cycles connecting the saddles on the sphere at infinity
(see figure 2). �

Now, guided by the results of theorem 2 and by the suggestions of [10], we present
some numerical simulations which indicate that system (1) may present strange attractors in a
neighborhood of the families of singularly degenerate heteroclinic cycles.

Taking into account the results presented in this and in the previous sections one can
conclude that it is impossible to encounter any type of strange attractor near the singularly
degenerate heteroclinic cycles only by taking v2 �= 0. Then we have to use the parameter
h and consider v1 �= v3. Following these guidelines provided by the analytical results, we
numerically found a four wings butterfly shaped strange attractor for system (1) with parameter
values v1 = 1.5, v2 = −0.3, v3 = 1.67 and h = 0.04. This attractor and its projections in the
coordinate planes are shown in figures 4 and 5 of section 1.

One of the main properties of chaotic systems is their sensitive dependence on initial
conditions. In order to check numerically if this property is verified for the Rabinovich four
wings attractor we have made several numerical simulations. Considering, for instance, the
initial conditions (5, 5, 5) and (5, 5.01, 5) we got the three-dimensional attractor and respective
x-coordinate, the parametrized curve (t, x(t)), as shown in figure 22. The solutions related to
each initial condition differ in its gray scale. One can observe clearly that the solutions stay
close up to the time value t = 70 and then they diverge drastically, showing the mentioned
sensitive dependence on initial conditions.
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Figure 22. Strange attractor of the Rabinovich system with v1 = 1.5, v2 = −0.3, v3 = 1.67 and
h = 0.04 (left) and its x-coordinate curve (right). Initial conditions: (5,5,5) and (5,5.01,5).

5.1. Remarks on the paper [3]

We have some remarks about the paper [3].

(a) In the abstract the authors present the Rabinovich system with the third equation given
by ż = v3z + xy although throughout the paper and also in the related papers the third
equation is ż = −v3z + xy.

(b) In theorem 1.1(b) of [3] (see table 11(b)) it is stated that for v1 = v2 = v3 �= 0, and
h = 0 the Rabinovich system is completely integrable and that H1 = (x2 + y2)/(x2 − z2)

and H = (y2 + z2)/(x2 − z2) are two first integrals. In fact these two functions are first
integrals but unfortunately they are not independent.

(c) The singular point (0, 0, 0) corresponding to the Rabinovich system with v1 = v2 = v3 �=
0, h �= 0 is an attracting node or focus if |h| < 1, and a saddle if |h| > 1. Observe that it
is not correctly represented in figure 7 of [3].
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